
Samynathan, R., Venkidasamy, B., Shanmugam, A., Ramalingam, S. & Thiruvengadam, M. Functional role of microRNA in the regulation of biotic and abiotic stress in agronomic plants. Front. Genet. 14, 1–16 (2023).
Brousse, C. et al. A non-canonical plant microRNA target site. Nucleic Acids Res. 42, 5270–5279 (2014).
Raza, A. et al. miRNAs for crop improvement. Plant Physiol. Biochem. 201, 107857 (2023).
Maharajan, T., Palayullaparambil, T. & Krishna, A. Role of genome sequences of major and minor millets in strengthening food and nutritional security for future generations. Agriculture 14(5), 670 (2024).
Maharajan, D., Ceasar, S. A. & Krishna, T. Harnessing the transcriptomic resources of millets to decipher climate resilience and nutrient enrichment traits. CRC. Crit. Rev. Plant Sci. https://doi.org/10.1080/07352689.2024.2354981 (2024).
Ceasar, S. A. The role of millets in attaining United Nation‘s sustainable developmental goals. Plants, People, Planet https://doi.org/10.1002/ppp3.10254 (2022).
Rani, V., Joshi, D. C., Joshi, P., Singh, R. & Yadav, D. “Millet Models” for harnessing nuclear factor-Y transcription factors to engineer stress tolerance in plants: current knowledge and emerging paradigms. Planta 258, 29 (2023).
de Cardoso, T. C. S. et al. New insights into tomato microRNAs. Sci. Rep. 8, 16069 (2018).
Li, Q., Shen, H., Yuan, S., Dai, X. & Yang, C. miRNAs and lncRNAs in tomato: Roles in biotic and abiotic stress responses. Front. Plant Sci. 13, 1–13 (2023).
Sood, S., Joshi, D. C., Kumar, A. & Anil, C. Phenomics and genomics of finger millet : Current status and future prospects. Planta 250, 731–751 (2019).
Maharajan, T., Ceasar, S. A. & Ajeesh Krishna, T. P. Finger millet (Eleusine coracana (L.) Gaertn): Nutritional importance and nutrient transporters. CRC. Crit. Rev. Plant Sci. 41, 1–31 (2022).
Kumar, A. et al. Nutraceutical value of finger millet [Eleusine coracana (L.) Gaertn.], and their improvement using omics approaches. Front. Plant Sci. 7, 1–14 (2016).
Sood, S., Babu, B. K. Joshi, D. History, Botanical and Taxonomic Description, Domestication, and Spread BT The Finger Millet Genome. in (eds. Kumar, A., Sood, S., Babu, B. K., Gupta, S. M. Rao, B. D.) 1–12 (Springer International Publishing). https://doi.org/10.1007/978-3-031-00868-9_1 (2022)
Ceasar, A. Genome-editing in millets: current knowledge and future perspectives. Mol. Biol. Rep. 49, 773–781 (2022).
Usha, S. et al. Identification of microRNAs and their targets in finger millet by high throughput sequencing. Gene 574, 210–216 (2015).
Nageshbabu, R., Jyothi, M. N., Sharadamma, N., Rai, D. V. & Devaraj, V. R. Expression of miRNAs confers enhanced tolerance to drought and salt stress in finger millet (Eleusine coracona). J. Stress Physiol. Biochem. 9, 220–231 (2013).
Sunkar, R., Chinnusamy, V., Zhu, J. & Zhu, J.-K. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends. Plant Sci. 12, 301–309 (2007).
Zhao, H. et al. The arabidopsis thaliana nuclear factor Y transcription factors. Front. Plant Sci. 7, 1–11 (2017).
Rani, V., Rana, S., Muthamilarasan, M., Joshi, D. C. & Yadav, D. Expression profiling of nuclear factor-Y (NF-Y) transcription factors during dehydration and salt stress in finger millet reveals potential candidate genes for multiple stress tolerance. Planta 259, 136 (2024).
Li, X. Y. et al. Evolutionary variation of the CCAAT-binding transcription factor NF-Y. Nucleic Acids Res. 20, 1087–1091 (1992).
Petroni, K. et al. The promiscuous life of plant NUCLEAR FACTOR Y transcription factors. Plant Cell 24, 4777–4792 (2013).
Kavi, P. B., Showkat, K., Ganie, A., Wani, S. H. & Guddimalli, R. Nuclear Factor – Y ( NF – Y ): Developmental and stress – responsive roles in the plant lineage. J. Plant Growth Regul. https://doi.org/10.1007/s00344-022-10739-6 (2022).
Chakraborty, A., Viswanath, A., Malipatil, R., Rathore, A. & Thirunavukkarasu, N. Structural and functional characteristics of miRNAs in five strategic millet species and their utility in drought tolerance. Front. Genet. 11, 1–15 (2020).
Usha, S. et al. Computational identification of microRNAs and their targets from finger millet (Eleusine coracana). Interdiscip. Sci. – Comput. Life Sci. 9, 72–79 (2017).
Puranik, S. et al. Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria italica L.). PLoS ONE https://doi.org/10.1371/journal.pone.0064594 (2013).
Suresh, B. V. et al. De novo transcriptome analysis identifies key genes involved in dehydration stress response in kodo millet (Paspalum scrobiculatum L.). Genomics 114, 110347 (2022).
Rani, V., Singh, V. K., Joshi, D. C., Singh, R. & Yadav, D. Genome-Wide identification of nuclear factor -Y (NF-Y) transcription factors family in finger millet reveals structural and functional diversity. Heliyon https://doi.org/10.1016/j.heliyon.2024.e36370 (2024).
Dai, X. & Zhao, P. X. psRNATarget: A plant small RNA target analysis server. Nucleic Acids Res. 39, W155–W159 (2011).
Chai, J. et al. Bioinformatic identification and expression analysis of banana MicroRNAs and their targets. PLoS ONE 10, 1–15 (2015).
Luan, M. et al. Expression of zma-miR169 miRNAs and their target ZmNF-YA genes in response to abiotic stress in maize leaves. Gene 555, 178–185 (2015).
Bravo-vázquez, L. A. et al. Identification and expression profiling of microRNAs in leaf tissues of Foeniculum vulgare Mill . under salinity stress. Plant Signal. Behav. 19, 2361174 (2024).
Vignesh, D. & Parameswari, P. MiRPI : Portable software to identify conserved miRNAs, targets and to MiRPI : Portable software to identify conserved miRNAs. Targets Calc. Precursor Stats. https://doi.org/10.5808/GI.2011.9.1.039 (2011).
Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).
Tamura, K., Stecher, G. & Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).
Guo, Z. et al. PmiREN: A comprehensive encyclopedia of plant miRNAs. Nucleic Acids Res. 48, D1114–D1121 (2020).
Gonçalves, J. P., Madeira, S. C. & Oliveira, A. L. BiGGEsTS: Integrated environment for biclustering analysis of time series gene expression data. BMC Res. Notes 2, 1–11 (2009).
Chen, C. et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 13, 1194–1202 (2020).
Reddy, P. S. et al. Comprehensive evaluation of candidate reference genes for real-time quantitative PCR (RT-qPCR) data normalization in nutri-cereal finger millet [Eleusine Coracana (L.)]. PLoS ONE 13, 1–17 (2018).
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).
Shannon, P. et al. Cytoscape: A software environment for integrated models. Genome Res. 13, 426 (1971).
Cao, L. et al. Genome-wide identification of NF-Y gene family in maize (Zea mays L.) and the positive role of ZmNF-YC12 in drought resistance and recovery ability. Front. Plant Sci. https://doi.org/10.3389/fpls.2023.1159955 (2023).
Tan, X. et al. NF-YA transcription factors suppress jasmonic acid-mediated antiviral defense and facilitate viral infection in rice. PLoS Pathog. 18, 1–21 (2022).
Su, H. et al. Dual functions of ZmNF-YA3 in photoperiod-dependent flowering and abiotic stress responses in maize. J. Exp. Bot. 69, 5177–5189 (2018).
Ding, J., Li, D., Ohler, U., Guan, J. & Zhou, S. Genome-wide search for miRNA-target interactions in Arabidopsis thaliana with an integrated approach. BMC Genomics https://doi.org/10.1186/1471-2164-13-S3-S3 (2012).
Sun, F. et al. Whole-genome discovery of miRNAs and their targets in wheat (Triticum aestivum L.). BMC Plant Biol. 14, 142 (2014).
Zhu, Q.-H. et al. A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res. 18, 1456–1465 (2008).
Tang, Q. et al. Characteristics of microRNAs and target genes in maize root under drought stress. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23094968 (2022).
Yi, F., Xie, S., Liu, Y., Qi, X. & Yu, J. Genome-wide characterization of microRNA in foxtail millet (Setaria italica). BMC Plant Biol. https://doi.org/10.1186/1471-2229-13-212 (2013).
Devos, K. M. et al. Genome analyses reveal population structure and a purple stigma color gene candidate in finger millet. Nat. Commun. https://doi.org/10.1038/s41467-023-38915-6 (2023).
Zhao, B. et al. Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol. Biol. https://doi.org/10.1186/1471-2199-10-29 (2009).
Xie, Z. et al. Expression of arabidopsis MIRNA genes. Plant Physiol. 138, 2145–2154 (2005).
Sorin, C. et al. A miR169 isoform regulates specific NF-YA targets and root architecture in arabidopsis. New Phytol. 202, 1197–1211 (2014).
Yu, C. et al. Overexpression of miR169o, an overlapping MicroRNA in response to both nitrogen limitation and bacterial infection, promotes nitrogen use efficiency and susceptibility to bacterial blight in rice. Plant Cell Physiol. 59, 1234–1247 (2018).
Rani, V., Singh, V. K., Joshi, D. C., Singh, R. & Yadav, D. Molecular docking insights into nuclear factor Y (NF-Y) transcription factor and pyrabactin resistance 1 (PYL) receptor proteins reveal abiotic stress regulation in finger millet. Crop Des. 3, 100051 (2024).
Choudhary, A., Kumar, A., Kaur, H. & Kaur, N. MiRNA: the taskmaster of plant world. Biologia (Bratisl). 76, 1551–1567 (2021).
Prabu, G. R. & Mandal, A. K. A. Computational identification of miRNAs and their target genes from expressed sequence tags of tea (Camellia sinensis). Genom., Proteom. Bioinform. 8, 113–121 (2010).
Zhang, B. H., Pan, X. P., Cox, S. B., Cobb, G. P. & Anderson, T. A. Evidence that miRNAs are different from other RNAs. Cell. Mol. Life Sci. 63, 246–254 (2006).
Bhavsar, M., Mangukia, N., Patel, S., Rawal, R. & Mankad, A. Unraveling the miRnome of Nicotiana rustica (Aztec tobacco) – A Genomewide computational assessment. Plant Gene 32, 100378 (2022).
Xing, H. et al. Genome-wide investigation of microRNAs and expression profiles during rhizome development in ginger (Zingiber officinale Roscoe). BMC Genomics 23, 1–13 (2022).
Lotfi, A. et al. Role of microRNAs and their target genes in salinity response in plants. Plant Growth Regul. 82, 377–390 (2017).
Maheshwari, P. et al. Genome-wide identification and expression profile analysis of nuclear factor Y family genes in Sorghum bicolor L. (Moench). PLoS ONE 14, 1–27 (2019).
Petrov, V. et al. Identification of cis-regulatory elements specific for different types of reactive oxygen species in arabidopsis thaliana. Gene 499, 52–60 (2012).
Doornbos, R. F., Geraats, B. P. J., Kuramae, E. E., Van Loon, L. C. & Bakker, P. A. H. M. Effects of jasmonic acid, ethylene, and salicylic acid signaling on the rhizosphere bacterial community of arabidopsis thaliana. Mol. Plant. Microbe Interact. 24, 395–407 (2011).
Rivas-San, M. V. & Plasencia, J. Salicylic acid beyond defence: its role in plant growth and development. J. Exp. Bot. 62, 3321–3338 (2011).
Lu, L. et al. Identification and characterization of Csa-miR395s reveal their involvements in fruit expansion and abiotic stresses in cucumber. Front. Plant Sci. 13, 1–12 (2022).
Li, W. X. et al. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20, 2238–2251 (2008).
Yu, Y. et al. Overexpression of soybean miR169c confers increased drought stress sensitivity in transgenic Arabidopsis thaliana. Plant Sci. 285, 68–78 (2019).
Luan, M. et al. Family-wide survey of miR169s and NF-YAs and their expression profiles response to abiotic stress in maize roots. PLoS ONE 9, e91369 (2014).